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Abstract
The magneto-elastic interaction in cubic helimagnets with B20 symmetry is considered. It is
shown that this interaction is responsible for a negative contribution to the square of the
spin-wave gap � and it alone appears to disrupt the assumed helical structure. It is suggested
that competition between the positive part of �2

I , which stems from magnon–magnon
interaction, and its negative magneto-elastic part leads to the quantum phase transition observed
at high pressure in MnSi and FeGe. This transition has to occur when �2 → 0. For MnSi it was
shown using rough estimations that at ambient pressure both parts �I and |�ME| are
comparable with the experimentally observed gap. The magneto-elastic interaction is
responsible for 2k modulation of the lattice where k is the helix wavevector and contributes to
the magnetic anisotropy. Properties of the magnetic state above the quantum phase transition
are also discussed.

Experimental observation of the lattice modulation by x-ray and neutron scattering allows
the determination of the strength of the anisotropic part of the magneto-elastic interaction
responsible for the above phenomena and the lattice helicity.

1. Introduction

As a rule long-range magnetic order is a result of strong
exchange interaction. However, real magnetic structure
is determined by weak interactions which break exchange
symmetry. Interplay between them can lead to quantum phase
transitions (QPT) between different structures. As the simplest
example we can mention cubic ferromagnets. Changing the
sign of cubic anisotropy leads to rotation of the magnetization
from a cubic edge to its diagonal, or vice versa [1]. At the
same time the spin-wave gap depends on this sign and the spin-
wave spectrum remains stable on both sides of the transition.
A similar situation occurs in tetragonal antiferromagnets in a
magnetic field H directed at 45◦ to the sublattices [2]. The
field rotates them and a second order QPT occurs to the state
where sublattices are perpendicular to the field. The critical
field for this transition is determined by HC = �, where �

is the spin-wave gap at H = 0 and �2(HC) = 0, whereas
on both sides of the transition we have �2(H ) > 0. We also
mention the field induced spin-wave gap in spin chains with
the Dzyaloshinskii–Moriya interaction [3].

Competition of the low-symmetry Dzyaloshinskii–Moriya
interaction with other more symmetrical weak interactions
under external actions can lead to some new phenomena.
In this paper we study the contributions of magneto-elastic

(ME) and Dzyaloshinskii (D) [4]1 interactions to �2 in cubic
helimagnets with P213(B20) structure and assert that their
competition under pressure can lead to the QPT to a disordered
state discovered in MnSi by magnetization and resistivity
measurements [5–7] and neutron scattering [8, 9]. Recently
a similar transition was observed in FeGe [10].

Non-centrosymmetric cubic helimagnets (MnSi, FeGe,
FeCoSi) have been the subject of the intensive experimental
and theoretical studies for several decades. Their helical
structure was explained by Dzyaloshinskii [1, 4]. The
full set of interactions responsible for the observed helical
structure (the Bak–Jensen model) was established later
in [11, 12] in agreement with existing experimental data (see
for example [13] and references therein). The following set
of interactions were considered: conventional ferromagnetic
exchange, Dzyaloshinskii interaction in the form

VD = D
∫

dx(S(x) · [∇ × S(x)]), (1)

where S(x) is the spin density, anisotropic exchange and
cubic anisotropy. The first two interactions can explain the
helical structure and the last two fix the direction of the helix

1 An expression for antisymmetric exchange in cubic crystals was proposed
by Dzyaloshinskii [1, 4] and we call it the Dzyaloshinskii (D) interaction.
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wavevector k relative the crystal axes [12]. As will be shown
below, the ME energy plays the same role.

The renaissance of this field began with the discovery of
a quantum phase transition to a disordered (partially ordered)
state in MnSi. The following properties of this state attracted
particular attention: (i) non-Fermi-liquid conductivity [5–7],
and (ii) a spherical neutron scattering surface with weak
maxima along the 〈110〉 axes [7, 8], whereas at ambient
pressure Bragg reflections were observed along 〈111〉 [13].
These features and the structure of the partially ordered state
have been discussed in several theoretical papers (see [14–16]
and references therein). It should be noted that a spherical
scattering surface with maxima along 〈111〉 was observed in
MnSi at ambient pressure just above the critical temperature
TC � 29 K and explained using the Bak–Jensen model [17]. It
was demonstrated that this phase transition is of first order [18]
in agreement with theory (see [19] and references therein).
In [17] was also shown that the spherical scattering surface is
a result of the D interaction and has to be above the critical
pressure in the case of QPT. We discuss this problem further in
section 6.

Low T spin-wave theory of these compounds was
developed recently [20, 21]. Strong anisotropy of the spin-
wave spectrum at low momenta was predicted: excitations with
momentum along and perpendicular to the helical wavevector
k have linear and quadratic dispersion, respectively. At the
same time there is a contradiction between these papers.
In [20] was claimed that the spin-waves are gapless Goldstone
excitations due to translation invariance along the helical axis,
whereas in [21] the spin-wave gap was calculated in the 1/S
approximation. This contradiction was discussed in [22]. In
brief its essence is as follows. In [20] the 1/S corrections to the
spin-wave energy were not evaluated and translation invariance
was not proved. Meanwhile, if the authors did this they
would meet the problem of how to consider the Dzyaloshinskii
interaction: it contains two spin operators, and if they belong
to a single lattice point as in the conventional expression given
by equation (1), the translation invariance holds and the gap is
zero. However, this interaction always acts between different
spins, the lattice cannot be ignored and the translation changes
the energy of the spin pairs2. This generalized D interaction
was used in [21] and �2

I �= 0 was evaluated.
The existence of a gap is very important for correct

description of the behavior of the helix in a magnetic
field H⊥ which is perpendicular to the helical vector
k. In the gapless case the spin-wave spectrum becomes
unstable in infinitesimal H⊥ in contradiction to the well-
known experimental findings [21] and predictions of the
phenomenological Landau-like theory [23]. In [21] it was
shown that the helical state remains stable if H⊥ < �

√
2

and then k begins to rotate toward the field. Recently this
prediction was confirmed using small angle polarized neutron
scattering, and it was found that � � 13 μeV for Mn
Si [24–27].

2 Infinitesimal translation of two different spins along vector k leads to their
rotation on angle �ϕ ‖ k. It does not change the exchange energy but add
2D

∑
1,2(∇1 −∇2)[S1( �ϕ ·S2)−S2( �ϕ ·S1)] = 2Di

∑[(q · Sq)( �ϕ ·S−q)− ( �ϕ ·
Sq)(q · S−q)] �= 0 to the Dzyaloshinskii interaction.

In this paper we demonstrate that the magneto-elastic
(ME) interaction can provide a microscopical explanation of
the nature of the QPT. We evaluate its contribution to the square
of the spin-wave gap � and demonstrate that

�2 = �2
I + �2

ME, (2)

where �2
I was evaluated in [21] and �2

ME < 0 appears due to
magnon–phonon interaction stipulated by the ME interaction
considered as the second order perturbation. It is important
to note that if �2

I is zero the ME has to disrupt the helical
magnetic order. Hence we speculate that the quantum phase
transition at pressure is a result of competition between these
two contributions to �2 and occurs when �2 = 0.

Rough estimations for MnSi based on existing experimen-
tal data at ambient pressure (see section 5) give |�ME| ∼
7.6 μeV and �I = 4.0–28 μeV. Both contributions are com-
parable with the experimental value of � � 13 μeV deter-
mined in [24]. Hence at pressure two parts of �2 have to com-
pete and the quantum phase transition occurs when � = 0.
Besides we estimated the ME contribution to the magnetic
anisotropy and demonstrated that it is not small in compari-
son to the experimental value. We also demonstrated that the
ME leads to the lattice deformation with the wavevector 2k and
evaluated intensities of corresponding super-lattice reflections.
An experimental study of this would allow one to determine
both the strength of the anisotropic part of the ME interaction
responsible for the above mentioned phenomena and the lat-
tice helicity. It has to be noted that the ME interaction in the
Landau theory was investigated in [28, 29] and lattice defor-
mation was predicted at the wavevector k. This result does not
contradict ours as it was obtained for magnetized systems only.

The paper is organized as follows. In section 2 we
consider the ME in cubic helimagnets. Classical ground state
energy and the lattice deformation are studied in section 3.
The spin-wave–phonon interaction and the ME contribution to
�2 are considered in section 4. Obtained results, numerical
estimations and experimental consequences are discussed
in section 5. In section 6 properties of the magnetic
state above the QPT are discussed. The main results are
summarized in section 7. In the appendices A and B some
mathematical details are considered. Appendix C is devoted to
a consideration of the super-lattice reflections near forbidden
〈n00〉 Bragg peaks with odd ns.

2. Magneto-elastic interaction

In general form the magneto-elastic energy is given by (see for
example [1])

VME =
∑

R

Sα
RSβ

R BαβγμUγμ(R), (3)

where Sα
R is the spin component at the lattice point R, Uγμ =

(1/2)(∂uγ /∂ Rμ +∂uμ/∂ Rγ ) is the deformation tensor and the
lattice site displacement has well-known form

u(R) =
∑

eiq·R 1√
2N Mωq j

(eq j bq j + e−q j b
+
−qj), (4)

2
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where eq j are vectors of the phonon polarization, b(b+) their
absorption (excitation) operators and e−q j = e∗

q j [30].
Tensor B is symmetric in (αβ) and (γμ) components. In

cubic crystals there are the following non-zero components [1]:

Bxxxx = Byyyy = Bzzzz = B1,

Bxyxy = Byzyz = Bzxzx = B2,
(5)

and Bxyxy = Byxxy = Bxyyx etc. In an isotropic medium we
have

B is
αβμν = Bis(δαμδβν + δανδβμ)/2, (6)

B1 = Bis, B2 = Bis/2 and B1 − 2B2 = 0.
In non-collinear magnetic structures each lattice spin has

to be considered in its local orthogonal frame. In the case of
cubic helimagnets we have [21]

SR = Aeik·R(Sζ
R cos α + iSη

R − Sξ
R sin α)

+ A∗e−ik·R(Sζ

R cos α − iSη

R − Sξ

R sin α)

+ ĉ(Sζ

R sin α + Sξ

R cos α)

= ASA
R + A∗S A∗

R + ĉSc
R, (7)

where k is the helical wavevector, A = (â − ib̂)/2, unit vectors
â, b̂ and ĉ form a right-handed orthogonal frame, 〈Sζ

R〉 =
〈S〉 �= 0 is an average value of the lattice spin which does
not depend on R. If α = 0 we have a planar helix with
rotation around ĉ. For α �= 0 the sample is magnetized along ĉ.
Components Sη,ξ

R describe the perpendicular spin fluctuations
and are responsible for the spin-wave excitations. In [21] was
show that sin α = −H‖/HC where H‖ is the magnetic field
component along the helical vector k and HC is the critical field
for transition to the ferromagnetic state. According to [21] the
vector k ‖ ĉ in an arbitrary field.

Using the standard definition Sq = N−1/2
∑

SR

exp (−iq · R) in momentum space we obtain [21]

Sq = Sc
qĉ + S A

q A + S A∗
q A∗

Sc
q = Sζ

q sin α + Sξ
q cos α,

S A
q = Sζ

q−k cos α − Sξ
q−k sin α + iSη

q−k,

S A∗
q = Sζ

q+k cos α − Sξ
q+k sin α − iSη

q+k,

(8)

where Sc
q, SA

q and SA∗
q are functions of q, q − k and q + k,

respectively.
The spin components in equations (8) have the well-

known form

Sζ
q = N1/2 Sδq,0 − (a+a)q;

Sη
q = −i

√
S/2[aq − a+

−q − (a+a2)q/2S]
Sξ = √

S/2[aq + a+
−q − (a+a2)q/2S],

(9)

where aq and a+
q are conventional spin-wave operators.

In momentum space equation (3) is given by

VME = N−1/2
∑

l,m=A,A∗ ,ĉ

Sl
q1

Sm
q2

BU−q1−q2 . (10)

This expression is divided into three parts: direct (ĉĉ and
AA∗) terms where the U tensor is k independent, and first
order (ĉA), (ĉA∗) and second order (A A and A∗ A∗) umklapp
terms where the operator U depends on q1 + q2 ± k and
q1 + q2 ± 2k, respectively3.

In the case of uniform pressure P we have Uαβ =
−(P/3K )δαβ where K is the bulk modulus and Uq ∼
N1/2δq,0. As a result the umklapp terms are zero as ĉ · A =
A · A = 0 and VME → −N B1 S(S + 1)P/(3K ). Hence
the uniform pressure contributes to the classical part of the
magneto-elastic ground state energy only and B1 represents the
isotropic part of the ME interaction. However, the pressure has
to change basic parameters of the problem such as B1,2, sound
velocities etc.

For further analysis of equation (10) we use following
identity:

mnBUQ = iBA

∑
p=x,y,z

m pn p Q pu p

+ iB2[(m · Q)(n · u) + (m · u)(n · Q)], (11)

where m, n = (ĉ, A, A∗), BA = B1 − 2B2 is an anisotropic
part of the tensor B (see equation (6)) and u = uQ. As we will
see below, the second order umklapps are important only for
Q = 2k, (m, n) → (A, A) or (A∗A∗) and the second term is
zero.

3. Ground state energy and lattice deformation

In zero magnetic field, sin α = 0 and we have a planar helix.
Due to ME interaction it has to deform the lattice. In this case
from equations (8)–(11) it follows that in the classical part of
the ME interaction the first order umklapps are forbidden4 and
we obtain

VME = −2iN1/2 S2 BAk[(g · u) − c.c.], (12)

where gp = A2
pĉp and u p = u p

−2k.
For evaluation of the lattice deformation we must consider

the elastic energy. Unlike [28, 29], for simplicity we ignore the
cubic symmetry, as equation (12) is proportional to BA, i.e. this
symmetry has been taken into account in the main order. In this
case the unit cell elastic energy is given by [31]

F(r) = W [Uαβ(r)Uβα(r) + σU 2
αα(r)/(1 − 2σ)], (13)

where W = Ev0/[2(1 + σ)], v0 is the unit cell volume
and E and σ are the Young modulus and Poisson coefficient
respectively. As a result we have

F2k = 2W [k2(u · u∗) + (k · u)(k · u∗)/(1 − 2σ)]. (14)

From equations (12)–(14) for the ME part of the ground
state energy we obtain

EME = (2N S4 B2
A/W ){(w · w∗) + (w · ĉ)(w∗ · ĉ)/(1 − 2σ)

− [(g · w) + c.c.]}, (15)

3 As in [21] we use term umklapp for processes mixing excitations with
momenta q and q ± k,±2k etc.
4 They are allowed in magnetized state only [28].

3
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where w = iWku−2k/(BAS2 N1/2). Minimum of this energy is
evaluated in appendix A and we have

EME = − N S4 B2
A(1 + σ)

4Ev0

[
(G1 − G2) + (1 − 2σ)

2(1 − σ)
G2

]

� − N Ev0g2
A

4
(G1 − G2 + G2/2), (16)

u−2k = −2iN1/2 S2 BA(1 + σ)

Ev0k

[
g∗ − (g∗ · ĉ)ĉ

2(1 − σ)

]

� −(2igA/k)[g∗ − (g∗ · ĉ)ĉ/2], (17)

where gA = S2 BA/Ev0, cubic invariants G1 = 16(g · g∗) and
G2 = 16(g · ĉ)(g∗ · ĉ) are considered in appendix A and in the
right-hand side of both equations we neglect σ as it is usually
small [31].

4. Magnon–phonon interaction

We now consider the magnon–phonon interaction. We are
interested in terms which survive at q = 0 and contribute
to the spin-wave gap as other terms are small corrections to
the q-dependent part of the magnon dispersion considered
in [21] and [20]. To single them out we have to replace in
equation (10) one of the Sζ operators by Sδq±k,0. As a result
we obtain terms with phonon momenta q, q ± k, and q ± 2k.
The former disappear at q = 0, the second are proportional to
aq + a+

−q and cannot contribute to the gap (see below). Using
identity (11) for the last AA end A∗ A∗ terms in the case of
planar helix we have

V2k = −(2S)3/2ik BA

∑
[(aq − a+

−q)gpu p
−2k−q

+ (a−q − a+
q )g∗

pu p
2k+q]. (18)

From this equation for the magnon–magnon interaction we
obtain

VMM = 2(2kS2 BA)2/S
∑

(aq − a+
−q)

×
[∑

gp Dp r (�, 2k)g∗
r

]
(a−q − a+

q ), (19)

where D is the phonon Green function and we neglect q in
comparison with ±2k. It can be represented as

Dp r (ω, Q) = Dt (δp r − Q̂ p Q̂r ) + Dl Q̂ p Q̂r , (20)

where Q̂ = Q/Q and Dl(t) = [M(ω2 − s2
l(t)q

2)]−1, where l(t)
labels the longitudinal (transverse) phonon mode and sl(t) is a
corresponding sound velocity. We neglect optical branches, as
their contribution is of order (sk/θD)2 � 1 where θD is the
Debye temperature.

In the linear spin-wave theory the Hamiltonian is given by

HSW =
∑

[Eqa+
q aq + Bq(aqa−q + a+

−qa+
q )/2] (21)

and the square of the spin-wave energy ε2
q = E2

q − B2
q . As was

shown in [21] E0 = B0 = Ak2/2 where A is the spin-wave
stiffness at q � k and we have gapless excitations. We assume
that the ME interaction (19) is weak and gives small corrections

δE0 and δB0 to E0 and B0. In this case from equations (19)–
(21) for the magneto-elastic contribution to the square of the
spin-wave gap we obtain

�2
ME = Ak2(δE0 − δB0) = − Ak2(BAS2)2

2SM

×
(

G1 − G2

s2
t

+ G2

s2
l

)
� − Ak2 Ev0g2

A

4S
(G1 + G2) (22)

where gA = S2 BA/Ev0 and neglecting σ we have Ms2
l = Ev0

and st = sl/
√

2. Cubic invariants G1,2 are defined below
equation (17) and analyzed in appendix A. This expression is
negative as it should be in the second order perturbation theory
and �2

ME = 0 in the 〈100〉 direction only (see appendix A).
Consideration of q ± k terms lead to an expression similar to
equation (19) with a replacement a−a+ → a+a+ which does
not contribute to the gap, as in this case we have δE0 = δB0.

The spin-wave interaction considered in the 1/S
approximation leads to similar corrections and gives positive
part of �2 [21]5

�2
I = (Ak2)2

4SN

∑ Dq

D0
, (23)

where Dq is a form-factor of the Dzyaloshinskii interac-
tion [21]. Hence �2 is sum of both contributions and we obtain
equation (2)6.

The helical structure can be stable if

�2 = �2
I + �2

ME > 0 (24)

and if �I = 0 it can survive at k ‖ 〈100〉 only where �ME = 0.
Meanwhile it is well known that in MnSi and FeGe at low T
the helix axis k ‖ 〈111〉 and we have �I > |�ME|. Hence
if �2

I = 0 instead of the helical structure there are the chiral
spin fluctuations and at T = 0 we have the chiral spin liquid
considered briefly in section 6. It has to be noted that there are
critical fluctuations in the range of very small �2 as in the case
of conventional phase transition but their study is out of scope
of the paper.

5. Experimental consequences

For discussion of the experimental consequences of the
magneto-elastic interaction we have to know the Young
modulus E and the anisotropic part of the ME interaction
S2 BA. For MnSi the bulk modulus K = 1.37×106 bar [18, 32]
and neglecting the Poisson coefficient σ we obtain E = 3K =
4.11 × 106 bar and Ev0 = 240 eV (v0 = 95 × 10−24 cm3).

Unfortunately the value of BAS2 is unknown. As we
will see below, it may be determined by x-ray and neutron
scattering. The isotropic part of the ME interaction was studied
by an indirect method in [33]. Its contribution to the lattice
constant �a/a � −1.1 × 10−4 at T = 0 K was determined

5 As the Dyson–Maleyev interaction is non-Hermitian the 1/S correction
appears in the aa term in equation (21) only [21].
6 At H = 0 cubic anisotropy does not contribute to �2 and equations (52)–
(53) in [21] are erroneous.

4
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and the sum of the isotropic part of the ME and elastic energies
can be represented as

B1S2(�a/a) + Kv0(3�a/a)2/2. (25)

This expression is minimal at g1 = S2 B1/Ev0 = −3.3 × 10−4

and from equations (15) and (22) we obtain

EME = −6.5 μeV{56 mT}(gA/g1)
2(G1 − G2/2), (26)

�2
ME = −(17 μeV{0.15 T})2(gA/g1)

2(G1 + G2), (27)

where we used S = 1.6, Ak2 = HC = 0.6 T and HC is a
critical field for transition to the ferromagnetic state [21].

Let us estimate now the value of �I given by
equation (23). We do not know the real form of the ratio
r = Dq/D0 in equation (23). For r = 1, Ak2 = 0.6 T and S =
1.6 we get a maximum value �2

I max = (0.24 T{27μeV})2.
The minimum value of �2

I may be estimated assuming that
in equation (23) qmax = 2.4 nm−1 is equal to a border of
the Stoner continuum [34]. In this case we have �2

I min =
(35 mT{4.1 μeV})2.

In equation (27) for 〈111〉 we have G1 + G2 = 4/9 (see
equation (A.5)) and �ME � 0.10(gA/g1) T. So we see that at
ambient pressure both contributions to the gap are comparable
with the observed � � 0.11 T (see below). Hence we
can do make a plausible assumption that the quantum phase
transition at 14.6 kbar [5–8] is a result of vanishing �2. At
higher pressure �2 becomes negative and the helical structure
is unstable (see section 6).

It is not easy to measure the spin-wave gap � ∼ 10 μeV
by conventional neutron spectroscopy. It was done in [24]
by an indirect method using polarized neutron scattering in a
magnetized sample. We outline here main idea of this method
and compare corresponding results with above estimation of
the ME energy.

As was shown in [21] the ground state energy of the helical
structure in magnetic field is given by

EG = E A + EME − SH 2
‖

2HC
− SH 2

⊥�2

4HC(�2 − H 2
⊥/2)

, (28)

where H‖(⊥) is a field component along (perpendicular to)
the helical wavevector k, E A = (S2 F0k2 − 3S4 K )L/4
is the energy of magnetic anisotropy, F0 and K are
constants of the anisotropic exchange and cubic anisotropy,
respectively [12, 21]. The cubic invariant L = (4g · ĉ) is
considered in appendix A. It should be noted that growth of
the last term in equation (28) when H⊥ → �

√
2 is restricted

by condition �2/(�2 − H 2
⊥/

√
2) � (HC/�)2 [21].

Evolution of the helical structure in a magnetic field was
studied by small angle polarized neutron scattering in MnSi
near TC [25] at low T [24] and in FeCoSi compounds [26, 27].
Two new characteristic fields were determined. In zero field
the sample is in a multidomain state with k along all 〈111〉
directions. Then for the field along one of 〈111〉 axes at
HC1 the single domain state appears. With further increase in
field the Bragg intensity demonstrates a cusp at Hin. In [24]
it was interpreted as instability of the k direction connected
with the second term in equation (28). Indeed if H is slightly

below �
√

2 this term predominates if k ⊥ H and this vector
has to rotate perpendicular to the field but is blocked by the
anisotropy. Just below TC, where the anisotropy is weak, this
rotation was observed in [25]. In MnSi we have HC1 � 80 mT,
Hin � 160 mT and � � 110 mT = 13 μeV [24].

It is obvious that the single domain state can be realized
if SH 2

CI/2HC � 9 mT is of the order of E A + EME. For
〈111〉 directions we have EME � −25(gA/g1)

2 mT (see
equation (A.5)). So this condition is roughly fulfilled. More
detailed analysis is impossible as we do not know E A and gA.

The invariant L has two extrema L = 2/3 and 0 at k along
〈111〉 and 〈100〉 directions, respectively, and a saddle points at
〈110〉 directions. Hence if one neglects the ME interaction the
configuration with k ‖ 〈110〉 is forbidden [12]. The same holds
for maxima of the critical fluctuations above TC � 29 K [17].
Meanwhile in MnSi at high pressure above the quantum critical
point PC � 14.6 kbar maxima of the neutron scattering at
〈110〉 directions were observed [8]. In appendix B we show
that the ME interaction cannot resolve this problem, i.e. that
〈111〉 and 〈100〉 remain the only possible k directions in zero
magnetic field.

For more precise estimations, experimental measurements
of the magneto-elastic anisotropy constant S2(B1 − 2B2)

are important. We now demonstrate that it can be directly
extracted from intensities of satellite peaks near nuclear Bragg
reflections. Indeed, using equation (17) we obtain7

δ I±(K) = (2gA/k)2|K± · [g − (g · ĉ)ĉ/2]|2|F(K±)|2, (29)

where F(Q) is the nuclear structure factor, K is a reciprocal
lattice point, K± = K ± 2k and gA = S2(B1 − 2B2)/Ev0.
Relative satellite intensities are given by

δ I±(K)/I (K) � (2gA/k)2|K · [g − (g · ĉ)ĉ/2]|2. (30)

In zero magnetic field vectors k are along all 〈111〉
directions. If K ‖ k we have δ I± = 0. If, however, k ‖
(1, 1, 1) but K = (2πn/a)(1, 1,−1) we obtain

δ I±
I

=
(

4πngA

9
√

3ka

)2

= 2.2 × 10−5

(
ngA

g1

)2

, (31)

where we used ka = 0.17 [21]. For K ‖ (1,±1, 0) this
expression has to be multiplied by 1/4.

Similar results can be obtained for other K directions, with
one exclusion. We are interested in crystals with P213(B20)

symmetry, where 〈n, 0, 0〉 Bragg reflections are forbidden if n
is odd and observation of very weak super-lattice reflections
would be much easier8. Hence this case has to be considered
separately. We restrict ourselves to the case k ‖ (1, 1, 1)

only. First of all for even n we have equation (31) with the
replacement 2.2 → 2.2/4 � 0.55. For odd n the Bragg
intensities of the satellites are given by

I±(K) = 0.55 × 10−5

(
ngA

g1

)2

|FMn(Q) + FSi(Q)|2, (32)

7 The equations presented below are correct if the lattice and the helical
structure have the same mosaic. For MnSi the magnetic mosaic is greater
than the lattice one [24] and an additional small factor has to be introduced in
expressions for the relative intensities.
8 I am grateful to D Yu Chernyshov for providing this explanation.
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where form-factors Fj (Q) are given in appendix C. They
are not zero due to 2k modulation only and equation (32)
has an additional small factor of order (2ka)2 � 1 in
comparison with the even-n case. Observation of these
odd reflections provides a possibility to determine the lattice
chirality (see equation (C.6)) and its connections with the
spin chirality studied by polarized neutrons [13, 24–27]. It
has to be noted that the lattice chirality in some cases was
determined by anomalous x-ray scattering [13, 35] and electron
diffraction [36].

There are six domains in a virgin sample corresponding to
k along 〈111〉 directions. In a magnetic field HC1 � 0.08 T �
HC the single domain state is realized with k along the field
and the satellite intensity increases. However, further increase
in the field suppresses the helical structure and it disappears
at HC � 0.6 T [24]. In the intermediate region at HC1 <

H < HC the lattice modulation with the wavevector k also
appears [28]. Along with the discussed 2k lattice modulation
at low field H < �

√
2 the second order helical harmonic

appears [21]. This was observed in [24, 37].

6. Beyond QPT

This paper is not devoted to an analysis of the paramagnetic
state above QPT. According to [7, 8] this has a very complex
structure. We present here a short and very preliminary
consideration of this problem using the mean-field approach
which is not applicable very close to the critical pressure PC.
However, it tackles correctly the symmetry of the problem.

It is a natural assumption that just below the critical
pressure we have

�2 = �2
0(−x), (33)

where x = (P − PC)/PC. Above PC we can write the effective
action density in the form similar to the free energy in [17]

Sq =
[

A

2S
(q2 + κ2

0 )δαβ + iDεαβγ qγ

]
Sα

q Sβ
−q

+ F0

2
(q2

x |Sx
q |2 + q2

y |Sy
q |2 + q2

z |Sz
q|2), (34)

where the first term describes ferromagnetic fluctuations, the
second is the D interaction and the last one is the anisotropic
exchange which is very small. Similar action without the F0

term has been used in [14]. We restrict ourselves here to the
simplest form of cubic anisotropy as we have seen above that
other contributions do not change the final results. We assume
that in this equation the non-renormalized square of the inverse
correlation length κ2

0 = Cx0, where C ∼ �2
0/(Ak2), has the

correct dimensionality, x0 = (P − PC0)/PC0 and PC0 is the
non-renormalized critical pressure. By the same way as in [17],
above TC (see also [14]) for static susceptibility we obtain9

χαβ(q) = {
S[(q2 + k2 + κ2

1 )δαβ + 2ikq(D/|D|)εαβγ q̂γ

− (2qk)2q̂αq̂β/(q2 + k2 + κ2
1 )]}{A[(q + k)2 + κ2

1 ]
× {(q − k)2 + κ2

1 + 4q4k2(SF0{q̂4}/A)(q2 + k2 + κ2
1 )−1

× [(q + k)2 + κ2
1 ]−1}}−1

(35)

9 In [17] signs of the terms linear in D and F have to be changed. The wrong
sign is given in the definition of κ2

1 below equation (5) in [17] also.

where k = |SD|/A is the pitch of the helix, renormalized
κ2

1 = κ2
0 − k2 = C(P − P1)/P1 with P1 = PC0 + k2/C ,

q̂ = q/q and {q̂4} = q̂4
x + q̂4

y + q̂4
z is a cubic invariant

responsible for anisotropy of the critical fluctuations. In the
numerator the first term is responsible for isotropic part of the
susceptibility, and the second and the last one are chiral and
longitudinal contributions, respectively.

The chiral term in the static susceptibility is a result of
the D interaction in which the Dzyaloshinskii vector does
not change sign under time reflection [21]. This interaction
appears due to non-centrosymmetric lattice structure and the
very existence of the chiral spin fluctuations cannot depend on
the pressure. Hence the magnetic state at T = 0 and P > PC

can be considered as the chiral spin liquid.
The expression for the ω-integrated neutron scattering is

given by

dσ

d�
∼ q2 + k2 + κ2

1 + 2k(D/|D|)(q · P)

[(q + k)2 + κ2
1 ][(q − k)2 + κ2

1 + Fk2{q̂2}/(2A)] ,
(36)

where P is the neutron polarization and in the small F0 term
we put q = k and neglect κ2

1 . Completely neglecting the F0

term we obtain that the scattering intensity is maximal on the
sphere with q = k, as was observed in [8]. The invariant
{q̂4} has extrema at q along 〈111〉 and 〈100〉 directions equal to
1/3 and unity, respectively [12], and the scattering is maximal
along one of these directions depending on the sign of F0. For
example, if F0 > 0 the maxima occur along the cubic diagonals
and the second factor in the denominator has to be represented
as

(q − k)2 + κ2 + (SF0k2/2A)({q̂4} − 1/3), (37)

where κ2 = Cx , x = (P − PC)/PC and PC = P1 +
SF0k2/(6AC) is the mean-field critical pressure (cf [17]).
Unfortunately we have here a disagreement with experiment
where the intensity maxima were observed along 〈110〉 [8]. As
was explained above, other anisotropic interactions with cubic
symmetry cannot resolve this problem.

The last term in the numerator gives the chiral contribution
to the cross section which is proportional to neutron
polarization. This part depends on the sign of the D interaction
and the angle between q and P. As a result, depending on the P
direction the scattering may be increased or suppressed as was
observed in MnSi just above TC [17].

7. Conclusions

We considered the magneto-elastic interaction in cubic
helimagnets with B20 structure and demonstrated that it
deformed the lattice and gave a negative contribution to the
square of the spin-wave gap �2. Hence the helical structure
is stabilized due to a positive contribution to �2 which stems
from the magnon–magnon interaction [21]. It was suggested
that the quantum phase transition observed at pressure in MnSi
and FeGe is a result of competition between these two parts
of the gap and takes place when �2 = 0. This suggestion
is supported by rough estimations at ambient pressure of both
contributions to �2 for MnSi which have the same order
and are close to experimentally observed gap. It was also
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discussed how to measure directly the anisotropic part of
the ME interaction responsible for the considered phenomena
using x-ray and neutron scattering. Section 6 gave preliminary
discussion of the partly disordered state at pressures above
the QPT and polarized neutron scattering in it. It was
suggested that in this state we are dealing with a chiral spin
liquid.
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Appendix A

In this appendix we calculate the deformation of the lattice by
the ME interactions, cubic invariants G1,2 and L and analyze
their properties.

We begin with the classical energy (15). It is minimal if

wp + (w · ĉ)ĉ p/(1 − 2σ) = g∗
p, (A.1)

where p = x, y, z and gp = A2
pĉp and we have

wp = g∗
p − (ĉ · g∗)ĉ p/[2(1 − σ)],

EME = −(2N S4 B2/Q)[(g · g∗) − (g · ĉ)(ĉ · g∗)/(1−σ)]
(A.2)

where 16(g · g∗) = G1 and 16(g · ĉ)(ĉ · g∗) = G2.
In the cubic xyz frame we can write

â = (cos ϑ cos ϕ, cosϑ sin ϕ,− sin ϑ);
b̂ = (sin ϕ,− cos ϕ, 0);

ĉ = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ),

(A.3)

and for three principal k-directions 〈111〉, 〈110〉, and
〈100〉 we have: {â = (1/

√
6, 1/

√
6,−√

2/3); b̂ =
(1,−1, 0)/

√
2; ĉ = (1, 1, 1)/

√
3}, {â = (0, 0,−1); b̂ =

(1,−1, 0)/
√

2; ĉ = (1, 1, 0)/
√

2}, and {â = (0, 0,−1); b̂ =
(0,−1, 0); ĉ(1, 0, 0)}, respectively.

In this representation for G-functions we obtain

G1 = sin2 ϑ[(cos2 ϑ cos2 ϕ + sin2 ϕ)2 cos2 ϕ

+ (cos2 ϑ sin2 ϕ + cos2 ϕ)2 sin2 ϕ + sin2 ϑ cos2 ϑ]
G2 = sin4 ϑ{[cos2 ϑ(1 + sin4 ϕ + cos4 ϕ) + 2 sin2 ϕ cos2 ϕ]2

+ 4(sin2 ϕ − cos2 ϕ)2 cos2 ϑ sin2 ϕ cos2 ϕ}.
(A.4)

From these equations follows that functions G1 − G2 and G2

have extrema at 〈111〉, 〈110〉 and 〈100〉, near which we have

G1 − G2 = 4/9 − 20δϑ2/9 − 40δϕ2/27;
G2 = 8δϑ2/9 + 16δϕ2/27, 〈111〉;

G1 − G2 = 13δϑ2/4 + δϕ2;
G2 = 1/4 − 2(δϑ2 + δϕ2), 〈110〉;

G1 − G2 = δϑ2 + δϕ2;
G2 = 4(δϑ4 + δϕ4 + δϑ2δϕ2), 〈100〉,

(A.5)

where δϑ and δϕ are distances from corresponding extremal
points. Hence in the considered directions both functions
G1 − G2 and G2 have extrema and one can show that they
have no other extrema.

The contribution of the anisotropic exchange and cubic
anisotropy to the classical energy is proportional to cubic
invariant L given by [21]

L = 4
∑

|A p|2ĉ2
p = sin2 ϑ[(cos2 ϑ cos2 ϕ + sin2 ϕ) cos2 ϕ

+ (cos2 ϑ sin2 ϕ + cos2 ϕ) sin2 ϕ + cos2 ϑ]. (A.6)

As above, for the three principal directions we have

L = 2/3 − 4δϑ2/3 − 8δϕ2/9, 〈111〉;
1/2 + δϑ2 − 2δϕ2, 〈110〉; 2(δϑ2 + δϕ2), 〈100〉,

(A.7)
and L has a saddle point at 〈110〉.

Appendix B

We demonstrate now that in the presence of the ME
contribution to the ground state energy 〈111〉 and 〈100〉 remain
the only possible stable directions for the vector k.

From equations (26) and (28) at H = 0 it follows

EG = �L − �(G1 − G2 + G2/2) = � f (y), (B.1)

where � > 0 and y = �/� .
We have to study the behavior of f (y) for three principal

directions. For k ‖ 〈111〉 we obtain

f (y) = (2/3)(y−2/3)+(4/3)(−y+4/3)(δϑ2+2δϕ2) (B.2)

and EG is stable if � < 4�/3. In the 〈110〉 case we have

f (y) = (1/2)(y − 1/4) + (y − 9/4)δϑ2 − 2yδϕ2. (B.3)

In this configuration there is a saddle point as coefficients
at deviations δϑ2 and δϕ2 cannot be positive simultaneously.
Finally, if k ‖ 〈100〉 we have

f (y) = 2(y − 1/2)(δϑ2 + δϕ2). (B.4)

This configuration is stable if � > �/2. However, comparing
equations (B.2) and (B.4) we see that in the region �/2 <

� < �/3 the configuration 〈111〉 has the lower energy and
the 〈100〉 configuration is metastable. Hence we see that the
magneto-elastic energy cannot be responsible for the stability
of the 〈110〉 configuration.
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Appendix C

There are two different ions in compounds with P213
symmetry (Mn and Si; Fe and Ge etc) labeled below as 1 and 2,
respectively. Each of them occupy four positions in the cubic
unit cell: ρ1 = (x, x, x), ρ2 = (1/2+ x, 1/2− x, 1− x), ρ3 =
(1 − x, 1/2 + x, 1/2 − x) and ρ4 = (1/2 − x, 1 − x, 1/2 + x)

(right-handed structure) or ρ1 = (x, x, x), ρ2 = (1/2 −
x, 1/2 + x, 1 − x), ρ3 = (1/2 + x, 1 − x, 1/2 − x), and
ρ4 = (1 − x, 1/2 − x, 1/2 + x) (left-handed structure) [13].
For MnSi we have x1 = 0.138 (Mn) and x2 = 0.846 (Si). It is
interesting to note that these numbers are very close to the ion
positions in an ‘ideal’ B20 structure with x1 = 1/4τ = 0.1545
and x2 = 1 − x1 = 0.8455 where τ = (1 + √

5)/2 [38].
We consider below the odd-n case only. As we have two

different ions in the unit cell the total structure factor is a sum
F(Q) = F1(Q) + F2(Q) where

Fj (Q) = f j (Q)
∑

ei(Q·ρλ(x j )) (C.1)

and f j (Q) is a scattering amplitude for the j ion.
There are eight super-lattice reflections corresponding to

Q1 = (2πn + κ, κ, κ), Q2 = (2πn − κ, κ, κ), Q3 = (2πn +
κ,−κ, κ), and Q4 = (2π + κ, κ,−κ) where κ = ±2ka/

√
3.

Corresponding partial form-factors are given by

FR(Q1) = FL(Q1) = f e2π inx[e3iκx − eiκ(2−x)]
� i f κ(4x − 2)e2π inx, (C.2)

FR(Q2) = FL(Q2) = f {e2π inx[eiκx − eiκ(1−3x)]
+ e−2iπnx [eiκx − eiκ(1+x)]}
� i f κ[(4x − 1)e2π inx − e−2πnx ], (C.3)

FR(Q3) = FL(Q4) = f {e2π inx[eiκx − eiκ(1+x)]
+ e−2π inx [eiκ(1−3x) − eiκx]}
� i f κ[−e2π inx + (1 − 4x)e−2π inx], (C.4)

FR(Q4) = FL(Q3) = f e−2π inx[eiκ(1+x) − eiκ(1−3x)]
� 4 f iκxe−2π inx . (C.5)

From equations (C.4), (C.5) follows the intensity ratio

IR(Q3)

IR(Q4)
= IL(Q4)

IL(Q3)
, (C.6)

and from measurement of the 2k lattice deformation one can
determine the lattice chirality.
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